Mercury and food intolerances: common causes of chronic conditions related to leaky gut and intestinal dysfunction such as ulcerative colitis, IBS, Crohn’s, eczema, psoriasis, food allergies, arthritis, ADHD, and autoimmune disease; and treatments that improve these conditions.    

When intestinal permeability is increased, food and nutrient absorption is impaired. Dysfunction in intestinal permeability can result in leaky gut syndrome, where larger molecules and toxins in the intestines can pass through the membranes and into the blood, triggering immune response (6,303).  Progressive damage can occur to the intestinal lining, eventually allowing disease-causing bacteria, undigested food particles, and toxins to pass directly into the blood stream.  Dysfunctions in intestinal permeability have been found to be associated with diseases such as leaky gut syndrome (LGS), ulcerative colitis, irritable bowel syndrome (IBS), Crohn’s disease, CFS, eczema, psoriasis, food allergies, autoimmune disease, and arthritis (1abcdefgh,2b,6,302,303,406). Symptoms commonly associated with LGS include: abdominal pain, indigestion, diarrhea, anxiousness, chronic joint pain, chronic muscle pain, mental confusion, mood swings, poor memory, poor immunity and recurrent infections, bloating, fatigue. (487).   

Although there are also other causes of LGS, mercury and toxic metals have been found to be common toxic exposures that can cause increased intestinal permeability and intestinal dysfunction (2,338,303,406), as well as of the kidney epithelial and brush border cells. Mercury exposure also reduced the mucosal entry of sugars and amino acids to 80-90% of control levels in the small intestine cells within several minutes(3a). Mercury exposure blocks intestinal nutrient transport by interacting directly with brush border membrane transport proteins (3b).   Mercury also causes increase of inflammatory cytokines such as TNFa, IL-6, and IL-1b (480). Amalgam dental fillings are the largest cause of mercury in most people, and results in exposure to mercury vapor, inorganic mercury and methylmercury, since oral bacteria methylate inorganic mercury. EMF and Wi-fi increase mercury vapor exposure and thus chronic damage.

        Mercury causes significant destruction of stomach and intestine epithelial cells, resulting in damage to stomach lining which along with 

mercury’s ability to bind to SH hydroxyl radical in cell membranes alters permeability (338,405,35,21c,2) and adversely alters bacterial 

populations in the intestines causing leaky gut syndrome with toxic, incompletely digested complexes in the blood (116,228b,35,6) and 

accumulation of heliobacter pylori, a suspected major factor in stomach ulcers and stomach cancer (256,6bc) and Candida albicans

as well as poor nutrient absorption (338,3).


Dental amalgam has been found by thousands of medical lab tests and by medical studies to be the largest source of mercury exposure in most people who have several amalgam fillings (7). EMF or Wi-fi exposure increase mercury vapor exposure from amalgam fillings, increasing the toxic damage.   Susceptibility factors that reduce the body’s detoxification processes ability to detoxify toxic metals are a major factor in who is affected by mercury or toxic metal exposure and to what extent. Replacement of amalgam fillings and metals detoxification have been found to significantly improve the health of most with conditions related to bowel dysfunction and leaky gut syndrome) 8,9,302,303).  


        Other common causes or factors in leaky gut and the related conditions include food allergies and intolerances; drugs (NSAIDs, 

aspirin, stomach h2 blockers, steroids, etc.); Dysbiosis (overgrowth of harmful organisms due to antibiotic use and/or low probiotic levels);

chronic alcohol consumption; synergistic toxic exposures and chemical sensitivity; chronic infections; inadequate digestive enzymes (6b)

        While food allergies mediated by IgE can cause significant health effects including leaky gut syndrome, these are usually easily 

identified by the immediateness of reactions or skin tests.  Food intolerances mediated by IgG also commonly cause significant health 

effects including leaky gut syndrome, but the reactions are delayed and can be systemic and are harder to identify. Tests based on IgE 

such as skin test or RAST do not reliably identify such problems that are common factors in chronic health conditions and tests such as 

ELISA that measure both IgE and IgG are more reliable. Common causes of food intolerances include failure to breast feed babies for at 

least the first year of life, feeding table food in first year of life, use of antibiotics without adequate addition of probiotics; eating the same foods every day(6b). Food intolerances and food additives or processed foods that contain glutamate, aspartame, high-fructose corn syrup, dyes, etc. are common causes of leaky gut syndrome and neurological conditions such as ADHD(6b).  


        Food intolerances and IgG reactions lead to long lasting “immune complexes” that are factors in leaky gut related conditions as well as 

conditions such as Lupus, rheumatoid arthritis, CFS, fibromyalgia, ADHD, etc.  Inflammatory reactions to toxic metals, vaccines, food 

additives, food intolerances not only cause immune reactions but also reactions in the neurological microglial system.  This can cause brain 

fog, memory problems, and degenerative neurological conditions if prolonged chronic exposures (6). For example, virtually 100% of those 

with schizophrenic symptoms in schizophrenia, autism, ADHD, are found when tested to have food intolerance to wheat gluten or milk 

casein(6bd).  Enzymatic blockages by chronic toxic metal exposures such as vaccines or mercury have been found to be a factor in these 

food intolerances.   Similarly, this is the most common cause or factor in celiac disease and common cause of ataxia and diabetes(6bde). 

Similarly, food allergies or additives, food intolerances, high sugar consumption, and antibiotic use with adequate probiotics have been 

found to be the most common causes of children’s ear infections. Clinical studies have found that diets high in flavanoids, cartenoids

and including nutritional supplements such as buffered Vit C and natural E, selenium, omega-3 oils, probiotics are effective in 

preventing ear infections and other chronic conditions(6b). These in addition to multiple B vitamins, the flavanoids curcumin, hesperidin, 

and quercetin are effective in preventing and treating leaky gut related conditions (6,480).  


        Crohn’s disease usually occurs at a relatively young age and results when an immune or autoimmune response causes increased 

inflammatory cytokines like TNFa, IL-6, and IL-1b, resulting ininflammation of the ileum or colon(480). This usually results in 

thinning of the bowel wall and often formation of ulcers on the intestinal lining. Functional neutrophil deficiencies are often a 

factor in Crohn’s disease.   In addition to improvements in many patients after amalgam replacement and detoxification, diet and 

nutritional measures are usually effective at improving Crohn’s Disease(580).  The 4-R program has seen good success in many

patients.  The program removes all foods where there is suspicion of allergy that might produce inflammation. Common allergens include 

wheat/gluten, dairy, eggs, peanuts, tomatoes, corn, and red meat.  Additionally, elimination of gastrointestinal parasites, undesirable 

bacteria, fungus, and yeasts are carried out. Sometimes a treatment such as nystantin is used to eliminate yeast (480). Then vital nutrients 

are replaced by dietary measures and supplementation of a good multivitamin and mineral, minerals found deficient such as iron, 

magnesium, calcium, selenium, zinc, iodine and vitamins such as B-complex, B6, B12, folic acid. Next the intestines are reinocculated with 

friendly bacteria(Lactobacillus acidophilus and Lactobacilus bulgaricus. Finally, measures are taken to repair the intestine to correct for thee 

increased permeability. This is done by adding nutrients such as glutamine, pantothenic acid (B5), zinc, FOS, and vitamin C.

DHEA and Butyrate have also been found effective in many patients at reducing inflammation (480).

        Supplements and other treatments that reduce intestinal permeability have also been found to be protective against and to 

improve these conditions. Glutamine, berberine, probiotics, and vitamin D have been found to decrease intestinal permeability and 

protect against effects caused by leaky gut syndrome (4,5,480,487). Butyrate has been found to inhibit inflammation and carcinogenesis in the intestines and low butyrate levels are found in colon cancer, ulcerative colitis, and Crohn’s disease (10). Butyrate and 

phosphatidylcholine have been found to be protective against these conditions, and increased fiber content in diet promotes increased 

butyrate levels, through the effect on fermentation pattern (10).  


Supplementation with chlorella has been found to result in beneficial effects when used in patients chronic conditions such as ulcerative colitis, hypertention, or Fibromyalgia (304). Doctors such as D. Klinghardt (303) have suggested that the mechanism by which chlorella improves treatment of such conditions is metals detoxification, which is the main mechanism of action of chlorella and has been found to greatly improve intestinal function.


        Brain inflammation or hypoglycemia related to toxic metal 

exposures, food intolerances, etc. have been found to be common 

causes of ADHD, impulsivity, juvenile delinquency, criminality, and 

violence (6b,11,115). Detoxification, diet measures, and 

supplementation for deficient vitamins and minerals have been found 

to usually improve such conditions.



1(a) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007 Jul;23(4):379-83Mankertz J, Schulzke JD; & (b) Increased intestinal permeability in patients with inflammatory bowel disease. Eur J Med Res. 2004 Oct 29;9(10):456-60; Welcker K, Martin A, Kölle P, Siebeck M, Gross M; & (c ) The significance of bowel permeability. Curr Opin Clin Nutr Metab Care. 2007 Sep;10(5):632-8; Soeters PB, Luyer MD, Greve JW, Buurman WA; & (d) New diseases derived or associated with the tight junction. Arch Med Res. 2007 Jul;38(5):465-78; Cereijido M, Contreras RG, Flores-Benítez D, Flores-Maldonado C, Larre I, Ruiz A, Shoshani L; &  (e)Gastrointestinal symptoms and permeability in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2003 Sep-Oct;21(5):657-62; Weber P, Brune T, Ganser G, Zimmer KP; & (f)Intestinal permeability in patients with adverse reactions to food, Dig. Liver Dis , 2006, Oct, 38(10):732-6; & (g) Altered intestinal function in patients with chronic heart failure, J Am Coll Cardiol, 2007, Oct 16; 50(16):1561-9; &  (h) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005 Sep;2(9):416-22.  Fasano A, Shea-Donohue T.

(2)(a) Direct and indirect actions of HgCl2 and methyl mercury chloride on permeability and chloride secretion across the rat colonic mucosa. Toxicol Appl Pharmacol. 1992 Jun;114(2):285-94; Böhme M, Diener M, Mestres P, Rummel W. &    (b) Enhancement of ovalbumin-induced antibody production and mucosal mast cell response by mercury.  Food Chem Toxicol. 1999 Jun;37(6):627-37; Watzl B, Abrahamse SL, Treptow-van Lishaut S, Neudecker C, Pool-Zobel BL. &     (c) Multiple effects of mercury on cell volume regulation, plasma membrane permeability, and thiol content in the human intestinal cell line Caco-2.  Cell Biol Toxicol. 2005 May-Jul;21(3-4):163-79 Aduayom I, Denizeau F, Jumarie C. &  (d) Effects of dimethylsulfoxide and mercurial sulfhydryl reagents on water and solute permeability of rat kidney brush border membranes. Biochim Biophys Acta. 1990 Dec 14;1030(2):203-10; van Hoek AN, de Jong MD, van Os CH.

(3)Mercurial perturbation of brush border membrane permeability in rabbit ileum.  J Membr Biol. 1975 Aug 11;23(1):33-56.  Stirling CE.; & (b) HgCl2 inhibition of nutrient transport in teleost fish small intestine.  J Pharmacol Exp Ther. 1981 Jan;216(1):70-6. Miller DS.

(4) Intestinal permeability and systemic infections in critically ill patients, effect of glutamine, Crit Care Med. 2005 May, 33(5):1175-8; &  (b)Protective effect of glutamine on intestinal barrier function in patients receiving chemotherapy, Zhonghua Wei Chang Wai Ke Za Zhi 2006, Jan, 9(1):59-61, Jiang H P, Liu CA; & (c) Berberine inhibits ion transport in human colonic epithelia,  Eur J Pharmocol, 1999, Feb 26; 368(1):111-8. 

(5) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic stress, Gut  2006, Nov, 55(11):1553-60, Zareie M, Jury J, Yang PC; Sherman PM;  &  (b) Probiotics and inflammatory bowel diseases. Postgrad Med J. 2006 Jun;82(968):376-82. Bai AP, Ouyang Q; & (c) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008 Jan;294(1):G208-16.  Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC.

(6) (a) Hidden Causes of GI Dysfunction,  C.D. Meletis,  Vitamin Research News, vol 22, no.4,                         

April 2008; & (b) Are You the Victim of Hidden Allergies?,  The Blaylock Wellness 

Report, Vol 4, No. 11, Nov 2007; & (c) Food Additives: What You Eat Can Kill You, The Blaylock Wellness Report, Vo. 4, No. 10, Oct 2007

& (d); &(e);  &                    (f)

 (7) Mercury exposure levels from dental amalgam, medical lab tests and medical studies, B. Windham (Ed), 2007,

(8) Documentation of recovery of significant improvement in over 30 chronic health conditions after amalgam replacement,  peer-reviewed studies and clinical studies,

(9) Percentage with significant health improvement after dental amalgam replacement by chronic condition,  FDA reports and clinical case reports,

10(a) The role of butyrate on colonic function, Aliment Pharmocol Ther, 2008 Jan 15:27(2):104-119, Hamer HM, Jonkers, d et al; & (b) Dietary modulation of colon cancer risk, J Nutr 2007, Nov 137(11 Suppl):2576S-2579S, Kim YS, Milner JA; & (c) Mucosal metabolism in ulcerative colitis and Crohn’s Disease, Dis Colon Rectum, 1998, Nov: 41(11):1399-1405; & (d) Down-regulation of the onocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation,  Gastroenterology, 2007, Dec 133(6):1916-27; & (e) Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern, Nutr Rv. 2007 Feb,65(2):51-62; & (f) Effect of polyunsaturated fatty acid-enriched phosphatidylcholine and phosphatidylserine on butyrate-induced growth inhibition, differentiation, and apoptosis in Caco-2 cells, Cell Bichem Funct 2006 Mar-Apr, 24(2):159-65; & (g)Oral butyrate for mildly to moderately active Crohn's disease, 

& Di Sabatino A, Morera R, Corazza GR. Et al,   Aliment Pharmacol Ther. 2005 Nov 1;22(9):789-94

(11) Toxic metal exposures common factors in ADHD, violence, impulsivity, juvenile delinquency, and criminality;  B.Windham (Ed),

(20) Denton, Sandra, M.D., The Mercury Cover-Up: Controversies in Dentistry, Townsend Letter For Doctors, July 1990;488-491

(21) R.A.Goyer,”Toxic effects of metals”inCaserett and Doull’s Toxicology- TheBasic Science of Poisons, McGraw-Hill Inc., N.Y., 1993; &(b) Goodman, Gillman, The Pharmacological Basis of Therapeutics, Mac Millan Publishing Company, N.Y. 1985; &(c) Encyclopedia of Occumpational Health and Safety, International Labour Office, Geneva, Vol 2, 3rd Edition.

(33) (a)  Markovich et al,  "Heavy       metals (Hg,Cd) inhibit the activity of the liver and kidney sulfate transporter Sat‑1", Toxicol  Appl Pharmacol,        1999,154(2):181‑7; & (b)2S.A.McFadden, “Xenobiotic metabolism and adverse environmental response: sulfur-dependent detox pathways”,Toxicology, 1996, 111(1-3):43-65; &(c)  Alberti A, Pirrone P, Elia M, Waring RH, Romano C.  Sulphation deficit in “low-functioning” autistic children. Biol Psychiatry 1999, 46(3):420-4.

(35)      (a)Levy T.E., Huggins HA,  Uniformed Consent: the hidden dangers in dental care, 1999, Hampton Roads Publishing Company Inc;

(40) Anti-metallothionein IgG and levels of metallothionein in autistic families. Russo AF, Swiss Med Wkly. 2008 Feb 9;138(5-6):70-7.

(43)      (a)Knapp LT; Klann E.   Superoxide‑induced stimulation of protein kinase C via  thiol modification and modulation of zinc content. J Biol Chem 2000 May 22; &(b) B.Rajanna et al, “Modulation of protein kinase C by heavy metals”, Toxicol Lett, 1995, 81(2-3):197-203: & A.Badou et al, “HgCl2-induced IL-4 gene expression in T cells involves a protein kinase C-dependent calcium influx through L-type calcium channels”J Biol Chem. 1997 Dec 19;272(51):32411-8., & D.B.Veprintsev, 1996, Institute for Biological Instrumentation, Russian Academy of Sciences,  Pb2+ and Hg2+ binding to alpha‑lactalbumin”.Biochem Mol Biol Int 1996 Aug;39(6):1255‑65

(51)      Heintze et al,“Methylation of Mercury from dental amalgam and  mercuric chloride  by oral          Streptococci”.,Scan. J. Dent. Res. 1983, 91:150‑152: & Wang J, Liu Z; [.In vitro Study of Strepcoccus Mutans in the Plaque on the Surface of Amalgam Fillings on the Conversion of Inorganic Mercury to Organic Mercury][Article in Chinese], Shanghai Kou Qiang Yi Xue. 2000 Jun;9(2):70-2; & L.I.Liang et al, "Mercury reactions in the human mouth with dental amalgams" Water, Air, and Soil pollution, 80:103-107; &   (b) Rowland, Grasso, Davies “The Methylation of Mercuric Chloride by Human  Intestinal Bacteria”. Experientia.  Basel 1975 ,31: 1064‑1065; & M.K.Hamdy et al, “Formation of methyl mercury by bacteria”, App Microbiol, 1975, Sept.; & Ludwicki JK Studies on the role of gastrointestinal tract contents in the methylation of inorganic mercury compounds Bull Env Contam Toxicol 42 1989 283-288; &  (c)  Choi SC, Bartha R.. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS.   Appl Environ Microbiol. 1993 Jan;59(1):290-5; 

(54)      M.E. Lund et al, “Treatment of acute MeHg poisoning by NAC”, J Toxicol Clin Toxicol, 1984, 22(1):31-49; &  Livardjani F; Ledig M; Kopp P; Dahlet M; Leroy M; Jaeger A.  Lung and blood superoxide dismustase activity in mercury vapor exposed rats: effect of  N‑acetylcysteine treatment. Toxicology 1991 Mar 11;66(3):289‑95

(96)   Goyer RA, National Institute of Environmental Health Sciences.  Toxic and essential metal interactions.  Annu Rev Nutr 1997; 17:37-50; & Nutrition and metal toxicity.  Am J Clin Nutr 1995; 61(Suppl 3): 646S-      650S; & Goyer RA et al, Environmental Risk Factors for Osteoporosis, Envir Health Perspectives, 1994, 102(4): 390-394; ; & Lindh U, Carlmark B, Gronquist SO, Lindvall A. Metal exposure from amalgam alters the distribution of trace  elements in blood cells and plasma.  Clin Chem Lab Med 2001 Feb;39(2):134‑142. ; & A.F.Goldberg et al, “Effect of Amalgam restorations on whole body potassium and bone mineral content in older men”,Gen Dent,  1996, 44(3): 246-8; & K.Schirrmacher,1998, “Effects of lead, mercury, and methyl mercury on gap junctions and [Ca2+]I in bone cells”, Calcif Tissue Int 1998 Aug;63(2):134‑9.

(111) (a) Quig D, Doctors Data Lab,"Cysteine  metabolism and metal  toxicity", Altern Med Rev,     1998;3:4, p262‑270, & (b)  Ceaurriz et al, Role of gamma‑  glutamyltraspeptidase(GGC) and extracellular     glutathione in dissipation of inorganic mercury",J Appl Toxicol,1994, 14(3): 201‑;    & W.O. Berndt et al, 

      "Renal glutathione and mercury uptake", Fundam  Appl Toxicol, 1985, 5(5):832‑9;   & Zalups RK, Barfuss DW.  Accumulation and handling of inorganic mercury in the kidney after coadministration with glutathione, J 

      Toxicol Environ Health, 1995, 44(4): 385-99; &    T.W.Clarkson et al, "Billiary secretion of glutathione‑metal complexes",   Fundam Appl   Toxicol, 1985,        5(5):816‑31;   

(115) (a) Biochemical Treatment of Mental Illness and Behavior Disorders, William J. Walsh, Ph.D. Health Research Institute,; Minnesota Brain Bio Association November 17, 1997  ;   &(b) Walsh WJ, Isaacson Hr, Hall A, Elevated blood copper to zinc ratios in assaultive young males, Physiol Behav. 1997 Aug;62(2):327-9; 

(116)    Liebert CA; Wireman J; Smith T; Summers AO, "The impact of mercury released from dental "silver" fillings on antibiotic resistance in the primate oral and intestinal bacterial flora", Met Ions Biol Syst 1997;34:441-60; & (b) A.O.Summers et al, Antimicrobial Agents and Chemotherapy, 37(4):825-834,1993;   &(c) Mercury resistance among clinical isolates of Escherichia coli.  Poiata A, Badicut I, Indres M, Biro M, Buiuc D. Roum Arch Microbiol Immunol. 2000 Jan-Jun;59(1-2):71-9; & (d) Resistance of the normal human microflora to mercury and antimicrobials after exposure to mercury from dental amalgam fillings. Edlund C, Bjorkman L, Ekstrand J, Sandborgh-Englund G, Nord CE. Clin Infect Dis. 1996 Jun;22(6):944-50; & (e) M.Vimy et al,” Silver dental fillings provoke an increase  in mercury  and antibiotic resistant bacteria in the mouth and intestines of primates”,    APUA Newsletter, Fall, 1991. 

(119) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes.  Brain Res. 2007 Feb 2;1131(1):1-10. Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M.

(126)(a)Singh I, Pahan K, Khan M, Singh AK. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem. 1998 Aug 7;273(32):20354-62; & Pahan K, Raymond JR, Singh I. Inhibition of phosphatidylinositol 3-kinase induces nitric-oxide synthase in lipopolysaccharide- or cytokine-stimulated C6 glial cells. J. Biol. Chem. 274: 7528-7536, 1999; &Xu J, Yeh CH, et al, Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death.  J Biol Chem. 1998 Jun 26;273(26):16521-6; & Dbaibo GS, El-Assaad W, et al,   Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death.   FEBS Lett. 2001 Aug 10;503(1):7-12; & Liu B, Hannun al, Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death.J Biol Chem. 1998 May 1;273(18):11313-20;     & (b)  Noda M, Wataha JC, et al, Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater. 2003 Mar;19(2):101-5; & Kim SH, Johnson VJ, Sharma RP.    Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways.    Nitric Oxide. 2002 Aug;7(1):67-74; & Dastych J, Metcalfe DD et al, Murine mast cells exposed to mercuric chloride release granule-associated N-acetyl-beta-D-hexosaminidase and secrete IL-4 and TNF-alpha. J Allergy Clin Immunol. 1999 Jun;103(6):1108-14. & (c) Tortarolo M, Veglianese P, et al,  Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression..  Mol Cell Neurosci. 2003 Jun;23(2):180-92.

(181)    P.W. Mathieson, “Mercury: god of TH2 cells”,1995, Clinical Exp Immunol.,102(2):229-30; & (b) Murdoch RD, Pepys J; Enhancement of antibody and IgE production by mercury and platinum salts. Int Arch Allergy Appl Immunol 1986 80: 405-11;& (d) Parronchi P, Brugnolo F, Sampognaro S, Maggi E.  Genetic and Environmental Factors Contributing to the Onset of  Allergic Disorders.  Int Arch Allergy Immunol 2000 Jan;121(1):2-9.

(194)    Lu SC, FASEB J, 1999, 13(10):1169‑83, “Regulation of hepatic glutathione synthesis: current concepts and controversies”;  & R.B. Parsons, J Hepatol, 1998, 29(4):595-602; &       R.K.Zalups et al,"Nephrotoxicity of inorganic mercury co‑administered with L‑cysteine", Toxicology, 1996, 109(1): 15‑29

(225)    S. Yannai et al, “Transformations of inorganic mercury by candida  albicans and Saccharomyces cerevisiae”, Applied Envir Microbiology,1991, 7:245-247; & N.E.Zorn et al, “ A relationship between Vit B-12, mercury uptake, and methylation”, Life Sci, 1990, 47(2):167-73; &   Ridley WP, Dizikes L, Cheh A, Wood JM.  Recent studies on biomethylation and demethylation of toxic  elements. Environ Health Perspect 1977 Aug;19:43‑6 & R.E.DeSimone et al, Biochem Biophys Acta, 1973,May 28; &  Yamada, Tonomura“Formation of methyl Mercury Compounds from inorganic Mercury by      Clostridium cochlearium” J Ferment Technol1972 50:159‑1660

(228)      (a)A.F.Zamm, “Removal of dental mercury: often an effective treatment for very sensitive patients”, J Orthomolecular   Med, 1990, 5(53):138-142. (22 patients); & (b)Dr. T. Rau, Paracelsus Alergy Clinic, Lustmuhle,  Switzerland, Allergies: Causes, Clarification, Treatment; Explore, 8(4),1996,‑therapy.html ; & (c)  Dr. B. Shelton, Director, The Allergy Center, Phoenix, Arizona,;  & (d) E. Cutler,   Winning the War against Asthma & Allergies, Delmar Learning; 1st edition (July 9, 1997) 

(232)    Adolph Coors Foundation, “Coors Amalgam Study: Effects of placement and removal of amalgam fillings”, 1995. (www) & International DAMS Newsletter, p17, Vol VII, Issue 2, Spring 1997. (31 cases); & (b) Antero Danersund,"Dental Materials and Psychoneuroimmunology Conference". Danderyd Hospital, 14-16 August, 1998; & Experimental study on brain oxygenation in relation to tissue water redistribution and brain oedema.  Acta Neurochir Suppl. 2000;76:279-81, Titovets E, Nechipurenko N, Griboedova T, Vlasyuk P.

(252)    B.J.Shenker et al, Dept. of Pathology, Univ. of Pennsylvania, “Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes: Alterations in cellular glutathione content”, Immunopharmacol Immunotoxicol 1993, 15(2-3):273-90;

(256)      D.B.Alymbaevaet al, Med Tr Prom Ekol, 6:13-15, 1995 (Russian), and Mayo Clinic, Stomach Cancer

(285)    R.C.Perlingeiro et al, “Polymorphonuclear phagentosis in workers exposed  to mercury vapor”, Int J Immounopharmacology”, 16(12):1011-7,1994; & Hum Exp Toxicol 1995, 14(3):281-6;   & M.L. Queiroz et al, Pharmacol Toxicol, 1994, 74(2):72-5; & (b) J.W.Albers et al, “Neurological abnormalities associated with remote occupational elemental mercury exposure”,Ann Neurol 1988, 24(5):651-9  

(302) R.F. Kidd, Results of Dental Amalgam Removal and Mercury Detoxification, Alternative Therapies, July 2000, vol 6, no. 4, p49-55. 

(303) Heavy Metal and Chemical Toxicity,  Dietrich Klinghardt, MD, Ph.D.; & Mercury Toxicity and Systemic Elimination Agents, D. Klinghardt & J Mercola(DO), J of Nutritional and Environmental Medicine, 2001, 11:53-62; & Amalgam Detox, Klinghardt Academy of Neurobiology, 2008

(304)  Dietary Supplementation with Chlorella pyrenoidosa Produces Positive Results in Patients with Cancer or Suffering from Certain Common Chronic Illnesses, R.E. Merchant and C.A. Andre, Townsend Letter for Doctors & Patients, Feb/Mar 2001

(314) M.Kubicka-Muranyi et al, “Systemic autoimmune disease induced by mercuric chloride”, Int Arch Allergy Immunol;1996, 109(1):11-20; & M.Goldman et al,1991,“Chemically induced autoimmunity ...”,Immunology Today,12:223-; & K. Warfyinge et al, “Systemic autoimmunity due to mercury vapor exposure in genetically susceptible mice”, Toxicol Appl Pharmacol, 1995, 132(2):299-309;& L.M. Bagenstose et al, “Mercury induced autoimmunity in humans”, Immunol Res, 1999,20(1): 67-78

(338) (a)W.Y.Boadi et al, Dept. Of Food Engineering and Biotechnology, T-I Inst of Tech., Haifa, Israel, “In    vitro effect of    mercury on enzyme activities and its accumulation in the first-trimester human         placenta”, Environ Res, 1992, 57(1):96-106;& “In vitro exposure to mercury and cadmium alters term human placental membrane fluidity”, Pharmacol, 1992, 116(1): 17-23;  & (b)J.Urbach et al, Dept. of Obstetrics & Gynecology, Rambam Medical Center, Haifa, Israel, “Effect of inorganic mercury on in vitro       placental nutrient transfer and oxygen consumption”, Reprod Toxicol, 1992,6(1):69-75;& ©  Karp W, Gale TF et al, Effect of mercuric acetate on selected enzymes of maternal and fetal hamsters” Environmental Research, 36:351-358; &  W.B. Karp et al, “Correlation of human placental enzymatic  activity with trace           metal concentration in placenta”, Environ   Res. 13:470- 477,1977; & (d)  Boot JH.  Effects of SH‑blocking compounds on the energy metabolism and glucose uptake in isolated rat  hepatocytes.  Cell Struct Funct 1995 Jun;20(3):233‑8; &  Semczuk M, Semczuk‑Sikora A.  New data on toxic metal intoxication (Cd, Pb, and Hg in particular)  and Mg status during pregnancy.  Med Sci Monit 2001 Mar;7(2):332‑340; & (e) H.Iioka et al, “The effect of inorganic mercury on placental amino acid transport”, Nippon sanka Fujinka Gakkai Zasshi, 1987, 39(2): 202-6.

(369) Sterzl I, Prochazkova J, Stejskal VDM et al, Mercury and nickel allergy: risk factors in fatigue and autoimmunity.              Neuroendocrinology Letters 1999; 20:221-228; &  Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD; The beneficial effect of amalgam replacement on health in patients with autoimmunity. Neuro Endocrinol Lett. 2004 Jun;25(3):211-8.   

(404)  M. E. Godfrey, Candida, Dysbiosis and Amalgam. J. Adv. Med. vol 9 no 2 (1996); & Romani L, Immunity to Candida Albicans: Th1,Th2 cells and beyond.  Curr Opin Microbiol 1999, 2(4):363-7; & Alfred      V. Zamm.  CANDIDA ALBICANS THERAPY: Dental mercury removal, an effective adjunct.  J. Orthmol.       Med. v1#4 pp261-5 (1986)

 (405)   Stejskal J,  Stejskal V. The role of metals in autoimmune diseases and the link to neuroendocrinology Neuroendocrinology Letters, 20:345‑358, 1999.

(406) Hemorrhagic Colitis Secondary to Acute Elemental Mercury Vapor Poisoning, Laura A   Heise, Brant M Wagener, Jennifer R Vigil, Mohamed Othman and Parsa Shahinpoor, Am J Gastroenterol. 2009 Feb;104(2):530-1. Epub 2009 Jan 13.

(410) J.R. Cade et al,  Autism  and schizophrenia linked to malfunctioning enzyme for milk protein digestion.        Autism, Mar 1999.

(411) Puschel G, Mentlein R, Heymann E, 'Isolation and characterization of dipeptyl peptidase IV from human         placenta', Eur J     Biochem 1982 Aug;126(2):359-65; & Kar NC, Pearson CM.  Dipeptyl Peptidases in         human muscle disease.  Clin Chim Acta 1978; 82(1-2): 185-92; & Seroussi K, Autism and Pervasive         Developmental Disorders , 1998, p174,etc.; &  Shibuya-Saruta H, Kasahara Y, Hashimoto Y. Human serum dipeptidyl peptidase IV (DPPIV) and its unique properties.  J Clin Lab Anal. 1996;10(6):435-40; & Blais A, Morvan-Baleynaud J, Friedlander G, Le Grimellec C. Primary culture of rabbit proximal tubules as a cellular model to study nephrotoxicity of xenobiotics. Kidney Int. 1993 Jul;44(1):13-8

(412) (a) Moreno-Fuenmayor H, Borjas L, Arrieta A, Valera V,   Plasma excitatory amino acids in autism.  Invest    Clin 1996,37(2):113-28;& Carlsson ML. Is infantile autsim a hypoglutamatergic disorer?  J Neural Transm          1998, 105(4-5): 525-35.     & (b)Rolf LH, Haarman FY, Grotemeyer KH, Kehrer H.  Serotonin and amino             acid content in platelets of autistic children.  Acta Psychiatr Scand 1993, 87(5): 312-6;  & (c)Naruse H,   Hayashi T,       

Takesada M, Yamazaki K.  Metabolic changes in aromatic amino acids and monoamines in 

infantile autism and a new related treatment, No To Hattatsu, 1989, 21(2):181-9;    

(469) M.M. van Benschoten, ““Acupoint Energetics of Mercury Toxicity and Amalgam Removal with Case Studies,”” American Journal of Acupuncture, Vol. 22, No. 3, 1994, pp. 251-262; &  M.M. Van Benschoten  and Associates, Reseda, Calif.  Clinic;

 (470) Dr. Garth Nicholson, Institute for Molecular Medicine, Huntington Beach,  alif.,  &  Michael Guthrie, R.Ph.     07‑18‑2001 Mycoplasmas – The Missing Link in Fatiguing  Illnesses,

  & New Treatments for           Chronic Infections Found in   Fibromyalgia Syndrome, Chronic Fatigue Syndrome,  Rheumatoid Arthritis,        and Gulf War Illnesses,  

(479) Amphotericin B, HgCl2 and Peritoneal Transport in Rabbits,  Zweers MM, Douma CE, van der Wardt AB, 

        Krediet RT, Struijk DG. Department of Nephrology, Academic Medical Center, Amsterdam, The Netherlands. Accepted Abstracts : The 3rd European Peritoneal Dialysis Meeting  ‑‑  5‑7 April 1998, Edinburgh, U.K.; & Structural basis of aquaporin inhibition by mercury. J Mol Biol. 2007 May 4;368(3):607-17; Savage DF, Stroud RM; & Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomesBiol Cell. 2008 Jan 2; Yukutake Y, Tsuji S, Hirano Y, Adachi T, Takahashi T, et al 

(480) Life Enhancement Foundation (MDs), Disease Treatment and Prevention,  Expanded 5th Edition, 2013. 

(481) Vitamin Research News, studies in various volumes, see achieve,

 (485) Dr. Hulda Clark, The Cure for all Diseases, New Century Press,2000, (amalgam replacement and treatment for parasites/bacteria)(U.S. CDC confirms parasites common in those with chronic immune conditions) & U.S. Center for Disease Control, Parasites(widespread exposures), ;

(487) Vitamin Research News, Vol 23, No. 1, Jan 2009, Gastrointestinal Support, p12-17. 

(506)     Leistevuo J, Pyy L, Osterblad M,   Dental amalgam fillings and the amount of organic mercury in human saliva.  Caries Res 2001 May‑Jun;35(3):163‑6;   &  Leistevuo J et al., Dental amalgam fillings and the amount of organic mercury in human saliva, Corks Res, 35(3):163-6 (2001 May-Jun)


DENTAL AMALGAM MERCURY SOLUTIONS ........................... 

DAMS Intl.   1079 Summit Ave     St Paul  MN   55105